Model based approach to synthesize spare-supported cleaning schedules for existing heat exchanger networks

نویسندگان

  • Kai-Yuan Cheng
  • Chuei-Tin Chang
چکیده

Almost every modern chemical process is equipped with a heat-exchanger network (HEN) for optimal energy recovery. However, as time goes on after startup, fouling on the heat-transfer surface in an industrial environment is unavoidable. If the heat exchangers in an operating plant are not cleaned regularly, the targeted thermal efficiency of HEN can only be sustained for a short period of time. To address this practical issue, several mathematical programming models have already been developed to synthesize online cleaning schedules. Although the total utility cost of a HEN could be effectively reduced accordingly, any defouling operation still results in unnecessary energy loss due to the obvious need to temporarily take the unit to be cleaned out of service. The objective of the present study is thus to modify the available model so as to appropriately assign spares to replace them. Specifically, two binary variables are adopted to respectively represent distinct decisions concerning each online exchanger in a particular time interval, i.e., whether it should be cleaned and, if so, whether it should be substituted with a spare. The optimal solution thus includes not only the cleaning schedule but also the total number of spares, their capacities and the substitution schedule. Finally, the optimization results of a series of case studies are also presented to verify the feasibility of the proposed approach. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrofit of Heat Exchanger Networks Considering Existing Structure: A New Targeting Procedure

A new retrofit targeting procedure, based on pinch technology has been developed. The new procedure considers existing structure of a given network and finds the most compatible configuration with the network. To achieve this aim, the procedure uses a linear programming technique that maximize the compatibility. Good compatibility between old and new networks helps to make the best use of c...

متن کامل

Cleaning Schedule Optimization of Heat Exchanger Networks Using Particle Swarm Optimization

Oil refinery is one of industries that require huge energy consumption. The today technology advance requires energy saving. Heat integration is a method used to minimize the energy comsumption though the implementation of Heat Exchanger Network (HEN). CPT is one of types of Heat Exchanger Network (HEN) that functions to recover the heat in the flow of product or waste. HEN comprises a number o...

متن کامل

Area Energy and Throughput Targeting in Debottlenecking of Heat Exchanger Networks with Decomposition Approach

For energy saving retrofit projects, its economics are usually evaluated in terms of capital investment and payback time. The capital investment is in direct relation to the total heat recovery area of the network and the payback time factor is base on both the area and the energy savings. The debottlenecking is an increased throughput, which can be profitable in economic sense. The combination...

متن کامل

Generalization of Decomposed Integration Methods for Cost Effective Heat Exchanger Networks with Multiple Cost Laws

At many circumstances, in heat exchange processes several exchangers were used with different cost laws due to their pressure ratings, materials of construction and exchange3r types. In such circumstances traditional methods of pinch technology can not be led to minimum total annual cost may cause some other disadvantages like more complexity or higher maintenance. In this research work a n...

متن کامل

Environmental sustainability enhancement of a petroleum refinery through heat exchanger network retrofitting and renewable energy

This paper presents a case study on the enhancement of environmental sustainability in a petroleum refining process based on an exergetic diagnostic approach. The Life Cycle Assessment (LCA) pinpointed crude oil production and electricity generating systems as the main sources of environmental unsustainability. The existing hot utility demand of the process is 78.4 MW with a temperature differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2016